
Process

Topics

• Introducing process: the basic mechanism for
concurrent programming
– Process management related system calls

• Process creation
• Process termination
• Running another program in a process
• Synchronization between Parent/child processes

Computer systems
Overview

User
Space

OS
CPU

scheduling
Memory
Mgmt

File system Device
Mgmt

Processes

Network Stack

System Call Interface

HW CPU Memory Disk
Keyboard
Monitor

Computer systems
user’s view

Program1

Each program owns its own (virtual) computer.
The execution of a program does not affect one
another.

CPU
Memory

Disk
Keyboard
Monitor

Program2

CPU
Memory

Disk
Keyboard
Monitor

ProgramX

CPU
Memory

Disk
Keyboard
Monitor

Process

• Informal definition:

A process is a program in execution.

• Process is not the same as a program.
– Program is a passive entity stored in disk
– Program (code) is just one part of the process.

What else in a process?

• Process context – everything needed to run resume
execution of a program:
– Memory space (static, dynamic)
– Procedure call stack
– Open files, connections
– Registers and counters :

• Program counter, Stack pointer, General purpose
registers

– ……

Why process?

• Multiple processes (users) share the system
resources.

• Multiple processes run independently

• Which of the following is more important?
– Process isolation (the illusion that each process is

the only one on the machine).
– Process interaction (synchronization, inter-process

communication).

Examining Processes in
Unix

• ps command
– Standard process attributes

• /proc directory -> cpuinfo
– More interesting information.
– Try “man proc”

• Top, vmstat command
– Examining CPU and memory usage statistics.

Creating a New Process
- fork()

pid = fork();

if (pid == -1) {
fprintf(stderr, "fork failed\n");
exit(1);

}

if (pid == 0) {
printf(“This is the child\n");
exit(0);

}

if (pid > 0) {
printf(“This is parent. The child is %d\n", pid);
exit(0);

}

Points to Note

• fork() is called once …
• … but it returns twice!!

– Once in the parent and
– Once in the child

• Fork() basically duplicates the parent process image
– Both processes are exactly the same after the fork()

call.
• Are there any dependence between the two processes?

– Provide a way to distinguish the parent and the child.

• When the main program executes fork(), an identical
copy of its address space, including the program and
all data, is created.

• System call fork() returns the child process ID to the
parent and returns 0 to the child process.

/* --- */
/* PROGRAM fork-01.c */
/* This program illustrates the use of fork() and getpid() system */
/* calls. Note that write() is used instead of printf() since the */
/* latter is buffered while the former is not. */
/* --- */
#include <stdio.h>
#include <string.h>
#include <sys/types.h>

#define MAX_COUNT 200
#define BUF_SIZE 100

void main(void)
{

pid_t pid;
int i;
char buf[BUF_SIZE];

fork();
pid = getpid();
for (i = 1; i <= MAX_COUNT; i++) {

sprintf(buf, "This line is from pid %d, value = %d\n", pid, i);
write(1, buf, strlen(buf));

}
}

• If the call to fork() is executed successfully, Unix will
make two identical copies of address spaces, one
for the parent and the other for the child.

• Both processes will start their execution at the next
statement following the fork() call. In this case, both
processes will start their execution at the assignment
statement.

• Both processes start their execution right after the system call fork().

• Since every process has its own address space, any modifications will be
independent of the others. In other words, if the parent changes the value
of its variable, the modification will only affect the variable in the parent
process's address space.

• Other address spaces created by fork() calls will not be affected even
though they have identical variable names.

• printf() is "buffered," meaning printf() will group the output of a process
together.

• While buffering the output for the parent process, the child may also
use printf to print out some information, which will also be buffered. As a
result, since the output will not be send to screen immediately, you may
not get the right order of the expected result.

• The output from the two processes may be mixed in strange ways. To
overcome this problem, you may consider to use the "unbuffered" write.

If you run this program, you might see the following on the screen:

This line is from pid 3456, value 13
This line is from pid 3456, value 14

This line is from pid 3456, value 20
This line is from pid 4617, value 100
This line is from pid 4617, value 101

This line is from pid 3456, value 21
This line is from pid 3456, value 22

Process ID 3456 may be the one assigned to the parent or the child. Due to the fact
that these processes are run concurrently, their output lines are intermixed in a rather
unpredictable way. Moreover, the order of these lines are determined by the CPU
scheduler. Hence, if you run this program again, you may get a totally different result.

/* --- */
/* PROGRAM fork-02.c */
/* This program runs two processes, a parent and a child.
Both of */
/* them run the same loop printing some messages. Note
that printf()*/
/* is used in this program. */
/* --- */

#include <stdio.h>
#include <sys/types.h>

#define MAX_COUNT 200

void ChildProcess(void); /* child process prototype
*/
void ParentProcess(void); /* parent process
prototype */

void main(void)
{

pid_t pid;

pid = fork();
if (pid == 0)

ChildProcess();
else

ParentProcess();
}

void ChildProcess(void)
{

int i;

for (i = 1; i <= MAX_COUNT; i++)
printf(" This line is from child, value = %d\n",

i);
printf(" *** Child process is done ***\n");

}

void ParentProcess(void)
{

int i;

for (i = 1; i <= MAX_COUNT; i++)
printf("This line is from parent, value = %d\n",

i);
printf("*** Parent is done ***\n");

}

• When the main program executes fork(), an identical copy of its address space,
including the program and all data, is created.

• System call fork() returns the child process ID to the parent and returns 0 to the child
process.

• The following figure shows that in both address spaces there is a variable pid. The one
in the parent receives the child's process ID 3456 and the one in the child receives 0.

• In the parent, since pid is non-zero, it calls
function ParentProcess(). On the other hand, the child has a
zero pid and calls ChildProcess() as shown below:

• Due to the fact that the CPU scheduler will assign a time
quantum to each process, the parent or the child process
will run for some time before the control is switched to
the other and the running process will print some lines
before you can see any line printed by the other process.

• Therefore, the value of MAX_COUNT should be large
enough so that both processes will run for at least two or
more time quanta.

• If the value of MAX_COUNT is so small that a process can
finish in one time quantum, you will see two groups of
lines, each of which contains all lines printed by the same
process.

Points to Note

• How to distinguish parent and child??
– Return value in child = 0
– Return value in parent = process id of child

• What about the data in the program?
• Return value of -1 indicates error in all UNIX system

calls – another UNIX convention
• Is it true: All processes are created by fork() in UNIX?

• Unix has evolved: fork followed by exec is no longer the only way to
run a program.

• vfork was created to be a more efficient fork for the case where the
new process intends to do an exec right after the fork.
After doing a vfork, the parent and child processes share the same
data space, and the parent process is suspended until the child
process either execs a program or exits.

• posix_spawn creates a new process and executes a file in a single
system call. It takes a bunch of parameters that let you selectively
share the caller's open files and copy its signal disposition and other
attributes to the new process.

Running an existing
command in a program –

exec()

• int execl(char * pathname, char * arg0, … , (char *)0);

• int execv(char * pathname, char * argv[]);

• int execle(char * pathname, char * arg0, … , (char *)0,
char envp[]);

• int execve(char * pathname, char * argv[], char envp[]);

• int execlp(char * filename, char * arg0, … , (char *)0);

• int execvp(char * filename, char * argv[]);

execv

• int execv(char * pathname, char * argv[]);

Example: to run “/bin/ls –l –a /”
pathname: file path for the executable
char *argv[]: must be exactly the same as the C/C++ command

line argument.

Execute a Program: the
execvp() System Call

The created child process does not have to run the same program as the parent
process does.
The exec type system calls allow a process to run any program files, which include
a binary executable or a shell script
The execvp() system call requires two arguments:
1.The first argument is a character string that contains the name of a file to be
executed.
2.The second argument is a pointer to an array of character strings. More precisely,
its type is char **, which is exactly identical to the argv array used in the main
program:int main(int argc, char **argv)
When execvp() is executed, the program file given by the first argument will be
loaded into the caller's address space and over-write the program there.
Then, the second argument will be provided to the program and starts the
execution.
As a result, once the specified program file starts its execution, the original
program in the caller's address space is gone and is replaced by the new program.
execvp() returns a negative value if the execution fails

Properties of exec()

• Replaces current process image with new program
image.
– E.g. parent image replaced by the new program image.
– If successful, everything after the exec() call will NOT be

executed.
• Will execv() return anything other than -1?

#include <stdio.h>
#include <sys/types.h>

void parse(char *line, char **argv)
{

while (*line != '\0') { /* if not the end of line */
while (*line == ' ' || *line == '\t' || *line == '\n')

line++ = '\0'; / replace white spaces with 0 */
argv++ = line; / save the argument position */
while (*line != '\0' && *line != ' ' &&

*line != '\t' && *line != '\n')
line++; /* skip the argument until ... */

}
argv = '\0'; / mark the end of argument list */

}

Function parse() takes an input line and
returns a zero-terminated array
of char pointers, each of which points to a
zero-terminated character string. This
function loops until a binary zero is found,
which means the end of the input
line line is reached. If the current
character of line is not a binary
zero, parse() skips all white spaces and
replaces them with binary zeros so that a
string is effectively terminated.
Once parse() finds a non-white space, the
address of that location is saved to the
current position of argv and the index is
advanced. Then, parse() skips all non-
whitespace characters.
This process repeats until the end of
string line is reached and at that
moment argv is terminated with a zero.

For example, if the input line is a string as follows:
"cp abc.CC xyz.TT"
Function parse() will return array argv[] with the following
content:

void execute(char **argv)
{

pid_t pid;
int status;

if ((pid = fork()) < 0) { /* fork a child process */
printf("*** ERROR: forking child process failed\n");
exit(1);

}
else if (pid == 0) { /* for the child process: */

if (execvp(*argv, argv) < 0) { /* execute the command */
printf("*** ERROR: exec failed\n");
exit(1);

}
}
else { /* for the parent: */

while (wait(&status) != pid) /* wait for completion */
;

}
}

Function execute() takes array argv[],
treats it as a command line arguments
with the program name in argv[0],
forks a child process, and executes the
indicated program in that child process.

While the child process is executing the
command, the parent executes
a wait(), waiting for the completion of
the child.

In this special case, the parent knows
the child's process ID and therefore is
able to wait a specific child to
complete.

void main(void)
{

char line[1024]; /* the input line */
char *argv[64]; /* the command line argument

*/

while (1) { /* repeat until done */
printf("Shell -> "); /* display a prompt */
gets(line); /* read in the command line */
printf("\n");
parse(line, argv); /* parse the line */
if (strcmp(argv[0], "exit") == 0) /* is it an "exit"? */

exit(0); /* exit if it is */
execute(argv); /* otherwise, execute the

command */
}

}

It prints out a command
prompt, reads in a line, parses
it using function parse(), and
determines if the name
is "exit". If it is "exit",
use exit() to terminate the
execution of this program;
otherwise, the main
uses execute() to execute the
command.

Running a command
without killing the

process

Running a command
without killing the

process

Parent

Running a command
without killing the

process?

Parent ChildFork(…)

Running a command
without killing the
process,

Parent ChildFork(…)

Exec(…)

New program
image

in execution

Terminating a process

• exit (int status)
– Clean up the process (e.g close all files)
– Tell its parent processes that he is dying (SIGCHLD)
– Tell child processes that he is dying (SIGHUP)
– Exit status can be accessed by the parent process.

• When a process exits – not all resources associated
with the process are freed yet!!
– ps can still see the process (<defunct>),

POSIX-Defined Signals (1)

* SIGALRM: Alarm timer time-out. Generated by alarm() API.
* SIGABRT: Abort process execution. Generated by abort() API.
* SIGFPE: Illegal mathematical operation.
* SIGHUP: Controlling terminal hang-up.
* SIGILL: Execution of an illegal machine instruction.
* SIGINT: Process interruption. Can be generated by <Delete> or

<ctrl_C> keys.
* SIGKILL: Sure kill a process. Can be generated by

“kill -9 <process_id>“ command.
* SIGPIPE: Illegal write to a pipe.
* SIGQUIT: Process quit. Generated by <crtl_\> keys.
* SIGSEGV: Segmentation fault. generated by de-referencing a

NULL pointer.

POSIX-Defined Signals (2)

* SIGTERM: process termination. Can be generated by
“kill <process_id>” command.

* SIGUSR1: Reserved to be defined by user.
* SIGUSR2: Reserved to be defined by user.
* SIGCHLD: Sent to a parent process when its child process has

terminated.
* SIGCONT: Resume execution of a stopped process.
* SIGSTOP: Stop a process execution.
* SIGTTIN: Stop a background process when it tries to read

from from its controlling terminal.
* SIGTSTP: Stop a process execution by the control_Z keys.
* SIGTTOUT: Stop a background process when it tries to write to

its controlling terminal.

Signaling Processes

* Signal
A signal is a notification to a process that an event has
occurred. Signals are sometimes called “software
interrupts”.

* Features of Signal
- Signal usually occur asynchronously.
- The process does not know ahead of time exactly when a

signal will occur.
- Signal can be sent by one process to another process (or to

itself) or by the kernel to a process.

Sources for Generating
Signals

* Hardware
- A process attempts to access addresses outside its own

address space.
- Divides by zero.

* Kernel
- Notifying the process that an I/O device for which it has

been waiting is available.
* Other Processes

- A child process notifying its parent process that it has
terminated.

* User
- Pressing keyboard sequences that generate a quit, interrupt
or stop signal.

Three Courses of Action

Process that receives a signal can take one of three action:
* Perform the system-specified default for the signal

- notify the parent process that it is terminating;
- generate a core file;

(a file containing the current memory image of the process)
- terminate.

* Ignore the signal
A process can do ignoring with all signal but two special signals:
SIGSTOP and SIGKILL.

* Catch the Signal
When a process catches a signal, except SIGSTOP and SIGKILL, it
invokes a special signal handing routine.

Parent/child
synchronization

• Parent created the child, he has the responsibility to see
it through:
– check if the child is done.

• wait, waitpid
– This will clean up all trace of the child process from the system.

– check if the exit status of the child
• pid_t wait(int *stat_loc),

– Some others such as whether the child was killed by
an signal. etc

• A child has no responsibility for the parent

– Processes are identified by a process id (pid)
• getpid(): find your own pid
• getppid(): find the pid of the parent

– A question: How to implement the system
routine?

• In higher-level computer languages, many commonly-
needed routines are prepackaged as function , which are
routines with specified programming interfaces.

• Some functions can be compiled in line with other code.
Other functions are compiled in as stub that make
dynamic calls for system services during program
execution.

• Functions are sometimes called library routines . The
compiler and a set of library routines usually come as
part of a related software development package.

STUB

• A stub is a small program routine that substitutes for a
longer program, possibly to be loaded later or that is
located remotely. For example, a program that uses
Remote Procedure Calls (RPC) is compiled with stubs
that substitute for the program that provides a requested
procedure. The stub accepts the request and then
forwards it (through another program) to the remote
procedure. When that procedure has completed its
service, it returns the results or other status to the stub
which passes it back to the program that made the
request.

Review

• Why processes?
• What is process context?
• How to check processes in UNIX?
• What does fork() do? What is its return value?
• Does fork() create all processes in a UNIX system?
• What does execv() do? What is its return value?
• How to run a command in a program without getting killed?
• Does exit completely clean up a process?
• Can a parent process tell if its child process terminate normally?
• Can a child process tell if its parent process terminate normally?

	Process
	Topics
	Computer systems Overview
	Computer systems user’s view
	Process
	What else in a process?
	Why process?
	Examining Processes in Unix
	Creating a New Process - fork()
	Points to Note
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Points to Note
	Slide Number 21
	Running an existing command in a program – exec()
	execv
	Execute a Program: the execvp() System Call�
	Properties of exec()
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Running a command without killing the process
	Running a command without killing the process
	Running a command without killing the process?
	Running a command without killing the process,
	Terminating a process
	POSIX-Defined Signals (1)
	POSIX-Defined Signals (2)
	 Signaling Processes
	Sources for Generating Signals
	Three Courses of Action
	Parent/child synchronization
	Slide Number 41
	Slide Number 42
	STUB
	Review

